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BACKGROUND 

1.1 Ethanol Production 

It has been reported that the distillation consumes 50-80 percent of the energy required in a 

typical fermentation ethanol process. [Ladisch, 1979] Furthermore, distillation cannot remove 

the last ~6% of water from ethanol. Complete dehydration is achieved with molecular sieves. 

This process is aimed to remove the water that can be burned in a correctly modified internal 

combustion engine. If aqueous ethanol can be utilized, a reduction in production costs can be 

exposed.  

Previous research from this author shows an optimal operating blend of water/ethanol fuel, 76% 

by volume ethanol, from a net energy production standpoint. [Anderson, 2009] Production 

energy to increase the ethanol concentration in a water/ethanol blend was compared to energy 

gained through mechanical work of an engine, Figure 1.  

 

 

Figure 1: Net energy requirements for ethanol production. 
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1.2 Catalytic Ignition  

Initially designed for lean burning engines in 1990 by Automotive Resources, Inc (ARI), the 

catalytic igniter seen in Figure 2 was implemented to solve the problems surrounding cold start 

and ignition requirements of aqueous fuels. Its effectiveness has been proven in a research transit 

van at the University of Idaho. The transit van has the ability to cold start and operates on 

concentrations up to 50% water. [Olberding, 2005] 

 

Figure 2: Catalytic igniter. 

The catalytic igniter is a self-contained ignition system that can be retrofitted to the spark plug 

hole of an SI engine or the direct fuel injection port of a CI engine. The igniter consists of a brass 

pre-chamber that houses a platinum catalyst. An exploded view of the igniter can be seen in 

Figure 3. 

 

Figure 3: Catalytic igniter exploded view. 

Upon the compression stroke of the engine cycle fresh air fuel mixture enters the pre-chamber 

created by the catalytic igniter. Because of the reduced activation energy associated with 
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catalytic surface reaction, ignition occurs at temperatures far below the normal gas-phase 

ignition temperature. [Cho, 1986] A flame then propagates outside the pre-chamber causing 

torch style ignition of the main chamber. This torch style ignition, seen in Figure 4, has the 

capabilities of igniting mixtures with high ignition energy requirements.  

 

 

Figure 4: Catalytic torch ignition pattern. 

 

1.3 CFR Engine 

A significantly modified CFR, Co-operative Fuels Research engine was used as a platform for 

aqueous fuel combustion research in this work. Modifications to fueling, cooling, exhaust, and 

data acquisition systems were completed to support catalytic ignition of aqueous blends. A 

catalytic igniter was fabricated by ARI for this engine. A picture of the University of Idaho’s 

CFR engine can be seen in Figure 5. 
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Figure 5: University of Idaho CFR engine. 

Modifications to the fuel system included a stainless steel multi fuel injection intake, dynamic 

injector pulse width controller, multi fuel storage tank, and replaceable orifice plugs to control 

intake air. An Omega controller was added to govern the air intake temperature.  

A complete stainless steel exhaust was fabricated; this system was equipped with duel stainless 

mufflers, an AFR sensor, and an emission-sampling bung. Due to the high level of water content 

in these fuels a water collector was added to the emissions sample line.  

A closed loop cooling system was added with a radiator, fan, and water heater that was regulated 

by an Omega temperature controller. This 12-amp heater could slowly bring the engine up to 

temperature prior to ignition.  

Extensive data acquisition capabilities were added to this engine. A high speed MeDAQ 

combustion analyzer coupled with an in-cylinder pressure sensor supplied performance data. An 

EMS 5 gas analyzer was installed to measure CO, NOx, and HC. The control panel of the engine 
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was equipped with an RPM, AFR, water-oil-air temperature, and oil pressure gauges. Manual 

override switches were also installed for most electronics.  

 

 

Figure 6: CFR instrumentation diagram. 
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RESULTS  

2.1 Effect of Injection Techniques on Emissions  

During the first set of tests, the following variables were held constant: compression 10:1; 

coolant temperature 55°C; oil temperature 70°C; intake air temperature 25°C; RPM 900; igniter 

voltage 16VDC. With these parameters held constant, lambda, AFR/AFRstoic, was varied 

between 0.92 and 1.02 and CO, NOx, and HC were measured to create a set of control data. This 

data will later be used as a baseline to compare against the aqueous fuel blends. NOx and CO 

data are shown in Figures 7 and 8.  

The second set of experiments was using three types of ethanol/water blended fuels: 80/20, 90/10 

then 70/30. These blends were premixed. The target lambda was 0.97, but the lengthy tests 

showed a small variance. CO, NOx, HC, and lambda were recorded over a ten minute period. 

The average NOx and CO were compared to the baseline data with either a percent reduction or 

percent increase. These same fuel blends and procedure were then run again, but the water and 

ethanol were separately injected. Precision flow meters were used to monitor the flow rates of 

the ethanol and water to ensure the same blends of fuel were being used. The differences for 

these tests can be seen in Figure 9, Figure 10, and Figure 11. Table 1 reports on variability in 

emissions data. 

 

Figure 7: NOx vs lambda. 
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Figure 8: CO vs lambda. 

 

 

Figure 9: NOx vs ethanol/water fuel. 
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Figure 10: CO vs ethanol/water fuel. 

 

 

Figure 11: HC vs ethanol/water fuel.
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Table 1: Variability in Emissions Data 

Fuel 
Ave-NOx 

(ppm) 

Stdv-NOx 

(ppm) 

Ave-CO 

(%) 

Stdv-CO 

(%) 

HC Delta 

(ppm) 

Control 0 143 -0.001 0.071 0 

B-90/10 -471 239 -0.013 0.255 65 

B-80/20 -434 198 -0.121 0.152 130 

B-70/30 -725 172 -0.183 0.171 200 

S-90/10 -29 122 -0.084 0.122 50 

S-80/20 0 111 -0.065 0.114 75 

S-70/30 -155 141 -0.100 0.174 100 

 

2.2 Effect of Injection Techniques on Performance 

A high-speed combustion analyzer was used to record indicated mean effective pressure, IMEP, 

and the crank angle at which 50% of the fuel is burned, CA50. Table 2 reports on variability in 

performance data.  

 

Figure 12: IMEP vs ethanol/water fuel. 
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Figure 13: CA50 vs ethanol/water fuel. 

 

 

Table 2: Variability in Performance Data 
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Control 38.2 8.8 65.1 0.9 

B-90/10 11.8 6.8 70.4 6.9 

B-80/20 22.7 6.9 58.3 1.2 

B-70/30 9.2 6.0 62.7 2.9 

S-90/10 20.1 6.8 59.7 6.1 

S-80/20 12.0 9.9 65.8 4.0 

S-70/30 18.1 6.2 48.1 3.8 
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2.3 Catalytic Igniter Supply Voltage 

In this test the catalytic igniter was supplied various input voltages while CA50, NOx, CO, and 

HC’s were recorded. The following variables were held constant, compression 8:1, coolant 

temperature 120 F, oil temperature 110 F, intake air temperature 75 F, RPM 900, lambda ~1, and 

fuel 100% ethanol. The results showed no significant affect on CA50, NOx, CO, and HC at 8:1 

compression. 
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DISCUSSION 

Of the four compression ratios tested, 5:1, 6:1, 7:1, and 10:1, the greatest cycle to cycle 

repeatability was sustained at 10:1. As such, these were the results presented in this paper. 

Altering the catalytic igniter voltage was found to have no noticeable effect on CA50 above 8:1. 

Therefore, it is assumed that this is not an important variable in controlling ignition timing.  

Past research has shown significant reduction in NOx emissions using aqueous ethanol blends. It 

was hypothesized that the primary effect of the water was to reduce flame temperatures, thereby 

obstructing the thermal formation of NOx. However, using separate injection of ethanol/water 

the nearly constant CO reported in Figure 7, coupled with the negligible NOx reductions in 

Figure 6 suggests that the addition of water alone is not responsible for the decrease in NOx 

emissions. Pre-mixed water/ethanol blends with the same water fraction have a much greater 

effect on NOx and CO emissions. More immediate contact between water molecules and ethanol 

under pre-mixed conditions appears to have a strong influence on combustion chemistry.  

The catalytic igniter used in this work was designed for higher compression at speeds more 

typical of automotive engines. As such, the pre-chamber geometry could be better optimized for 

earlier main chamber torch ignition, insuring more complete ignition of HC’s at the far side of 

the cylinder. The CFR engine used in this work operates at 900 RPM and has a 3.0” diameter 

bore. Evidence of some incomplete combustion can be seen in the IMEP and CA 50 data, even at 

10:1.  
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CONCLUSIONS 

In this research, the University of Idaho obtained a CFR engine and made modifications to 

support homogeneous charge catalytic ignition. The CFR engine can support catalytic ignition 

for multiple fuels, including 87 octane gasoline, 100% ethanol, and ethanol/water blends up to 

50/50. To study effects of altering ethanol/water blends on NOx, CO, and HC’s, the CFR engine 

was instrumented with a 5 gas analyzer as well as an elevated emission sample tube with an in-

line water collector. Significant reduction in NOx and CO emissions were observed with pre-

mixed water/ethanol compared with 100% ethanol as well as separately injected water and 

ethanol. This may be attributable to more extensive fuel cracking in the pre-chamber prior to gas 

phase ignition as well as closer proximity of water and fuel molecules during main chamber 

combustion.  

The current catalytic igniter was designed for higher compression and higher engine speed. At 

the relatively low compression ratios attainable with the CFR engine, late pre-chamber ignition 

leads to retarded main-chamber ignition, resulting in incomplete burning of the fuel. Even at 10:1 

compression, there is evidence of this situation in the IMEP and CA50 data. Design of a next 

generation igniter for future CFR testing is underway to remedy this deficiency in the current 

engine hardware.  
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